
Tripod Fall: Concept and Experiments
of a Novel Approach to Humanoid Robot Fall Damage Reduction

Seung-kook Yun and Ambarish Goswami

Abstract— This paper addresses a new control strategy to
reduce the damage to a humanoid robot during a fall. Instead
of following the traditional approach of finding a favorable
configuration with which to fall to the ground, this method
attempts to stop the robot from falling all the way to the ground.
This prevents the full transfer of the robot’s potential energy
to kinetic energy, and consequently results in a milder impact.
The controlled motion of the falling robot involves a sequence of
three deliberate contacts to the ground with the swing foot and
two hands, in that order. In the final configuration the robot’s
center of mass (CoM) remains relatively high from the floor
and the robot has a relatively stable three-point contact with
the ground; hence the name tripod fall. The optimal location of
the three contacts are learned through reinforcement learning
algorithm. The controller is simulated on a full size humanoid,
and experimentally tested on the NAO humanoid robot. In this
work we apply our fall controller only to a forward fall.

I. INTRODUCTION

Safety is one of the main concerns behind the independent
autonomous existence of humanoid robots in physically in-
teractive human environments. Although the loss of balance
and fall are rare in isolated or controlled environments, the
situation would be different when the physical separation
between robots and humans gradually disappears. A fall of a
humanoid robot is a particularly worrisome event; a fall from
an upright posture can cause damage to the robot, to delicate
and expensive objects in the surrounding or can inflict injury
to a nearby human being. Regardless of the substantial
progress in humanoid robot balance control strategies, the
possibility of fall remains real, even unavoidable.

A humanoid fall may be caused by external factors such
as unexpected or excessive forces, unusual or unknown floor
slipperiness, slope or profile of the ground, causing the robot
to slip, trip or topple. Falls can also result from internal
factors such as a malfunction or a failure of actuator, power
or communication system where the balance controller is
partially or fully incapacitated. In this paper we consider
only those situations in which a fall is caused by an external
factor; in particular the sensors and the motor power must
remain intact such that the robot can execute a prescribed
control strategy.

A falling humanoid can be easily appreciated as a
formidable system to study and control. During a fall, a
humanoid behaves as a nonlinear underactuated multi-body
system with high-DOF possessing a continuously changing
morphology and which must interact with unpredictable

Seung-kook Yun (seungkook.yun@sri.com) is with SRI Inter-
national, 333 Ravenswood Ave, Menlo Park, CA, USA. Ambarish Goswami
(agoswami@honda-ri.com) is with Honda Research Institute US.,
425 National Ave, Suite 100, Mountain View, CA, USA. This work was
done at Honda Research Institute.

C 

B 

A 

time 

Kinetic 
Energy 

B 

C 

A 

time 

Potential 
Energy 

B 

C 

A 

Tripod fall 

Fig. 1. The main idea of the tripod fall controller: (A) Imagine an upright
standing humanoid robot on flat ground starting to toppling forward. (B) In
traditional fall the humanoid CoM comes close to the ground resulting in
high kinetic energy which gets converted from the high potential energy of
(A). This causes high impact velocity. (C) The tripod fall controller stops the
CoM at a height from the floor so that a smaller amount of kinetic energy
gets accumulated. Thus, impact velocity is reduced. In addition, stepping
absorbs part of the kinetic energy.

contacts. Additionally, the robot is subjected to the relentless
gravitational pull, which it cannot fully resist, and which tries
to bring it down to a crash. Consequently, the time interval
between the detection of a fall and the actual event of ground
impact is very short. Yet, through simulation and experiments
we are able to demonstrate that meaningful modification to
the default fall behavior can be achieved and damage can be
reduced.

The tripod fall strategy, which is presented in this paper,
aims at reducing the damage to the humanoid by preventing
it from falling all the way to the ground. This is inspired
by acknowledging that the high speed of impact at the
end of a fall results from the large accumulation of kinetic
energy during the fall. Therefore, the earlier we can arrest
the humanoid motion, the more we may reduce the impact
velocity and consequently the impact force, as schematically
shown in Fig. 1.

Fig. 1 schematically describes the tripod fall strategy in
terms of potential energy (PE) and kinetic energy (KE) of the

RA020902
Text Box
IEEE ICRA 2014, Hongkong



falling humanoid. Starting from the initial upright standing
posture denoted by A in Fig 1 virtually all the previous
research on damage reducing fall accepted the inevitability
of posture B of Fig. 1, which corresponds to a complete fall
to the ground. These strategies tried to minimize the impact
velocity either by motion optimization [1], [2] or through
heuristics [3], [4], [5]. Also in contrast to earlier works we
use a stepping motion to break the fall early. In other words,
the robot’s first contact with the ground after the start of the
fall is through the stepping foot rather than through knee or
hand.

The tripod fall controller is designed to prevent the fall as
early as possiblewhen the robot CoM is high from ground
as shown in C of Fig 1. In this posture the humanoid is
supported by three contact points, one foot and two hands,
mimicking a tripod.

Compared to the previous works which used the knees
of the combined legs as the first contact point (assuming
the robot is falling forward) [1], [2], our controller uses
a stepping location of the swing foot as the first contact.
Therefore the stepping location can be anywhere on the
ground that the swing foot can reach during fall, while the
previous approaches had fixed first contact since the length
from the foot to the knee is constant. In other words, our
controller can actively choose the first contact point, not
passively accepting the fixed first contact. In addition, using
the swing foot as the first contact point keeps the CoM higher
than using the knee for the first contact.

In the current implementation of tripod fall, the arms are
fully stretched out for simplicity such that the controller
needs to tune only the shoulder angles while the elbow
and the wrist are locked. In future, impedance control will
be used for the arm contact in order to further reduce the
damage to the hand and the arm.

II. TRIPOD FALL CONTROLLER

The tripod fall control can be generalized as the morphing
of a rolling polyhedra as shown in Fig. 2. Viewing a
humanoid as a 3D convex hull composed of all the outer
vertices, edges and faces (ignoring curved surfaces, if any),
the tripod fall control can be thought of as changing the
polyhedra so that the robot performs a planned roll with
the three contacts by changing its joint angles. In this
paper, we use only one foot and two hands, however we
can generalize this concept of rolling polyhedra so that the
controller morphs the 3D convex hull consecutively so that
the polyhedra rolls as the controller plans. For example,
a complete 360-degree forward rolling motion such as in
Japanese martial art technique called Ukemi [5] may be
achieved by modeling the humanoid as the corresponding
polyhedra and controlling it to roll over the ground until the
two feet lands on the ground again after rolling. Implementa-
tion of such concepts as rolling over, falling to the shoulder
side and falling backward remains future work.

The important parameters for the tripod fall are the step-
ping location and the shoulder angles. Due to the highly non-
linear dynamics of a falling humanoid, a learning algorithm
is used to find the best parameters using multiple trials.

(a) (b)

Fig. 2. The generalized concept of humanoid fall as a rolling polyhedra. A
humanoid can be approximately modeled as a 3D convex polyhedra. Given
the quasi-static state of the robot, we may view the humanoid fall as a
rolling polyhedra on the ground. The stepping during the tripod fall can be
seen as morphing the polyhedra to reach a desired polyhedra with a new
3D convex hull. This morphing process will change the direction and the
impact force of the fall.

(a) Upright
standing

gr

(b) Postural
balance
maintenance

(c) Stepping for
balance mainte-
nance

(d) Tripod fall

Fig. 3. In momentum control, when both the ground reaction force and the
center of pressure (CoP) computed from desired momentum rate change are
not simultaneously achievable, a few distinct scenarios can arise according
to the magnitude of the push. (b) Fully respecting the desired linear
momentum while compromising angular momentum (if needed) results in
a postural balance control without stepping. (c) Contrarily, fully respecting
the desired angular momentum while compromising linear momentum (if
needed) results in a stepping motion. (d) When the push is even larger than
what the stepping controller can handle, compromising both the desired
angular momentum and linear momentum leads to the tripod-like motion
which involves a reactive stepping as well as the bending motion of the
body. The control of the arm is added to complete the tripod fall controller.

A. Transition among the Fall Control Strategies using Mo-
mentum Controller

We have earlier used momentum-based controller to con-
trol both the linear and angular momenta of the robot. As the
reactive stepping controller was used for a disturbance with
magnitude larger than what the postural balance controller
can handle (See Fig. 3), the tripod fall controller can be
used for an even larger disturbance for which even a reactive
stepping controller cannot prevent a fall. Therefore we use
the same technique to transition from the reactive stepping
control to the tripod fall control as the one for the transition
between the balance control and the reactive stepping control.

We briefly review the core of the momentum based
controller [6] which controls the rate changes of linear and
angular momenta according to the following rules:

k̇d = Γ11(kd − k) (1)

l̇d/m = Γ21(ṙG,d − ṙG) + Γ22(rG,d − rG) (2)



where k and k̇ are centroidal angular momentum and its
rate change, m is the total mass of the robot, rG and ṙG
are the locations and the velocity of the CoM. k̇d and l̇d
are the desired rates of change of centroidal angular and
linear momenta 1, respectively, and rG,d is the desired CoM
position. Γij represents a 3×3 diagonal matrix of feedback
gain parameters. The details can be found in [6].

The key to this controller is the observation that different
choices of the gain matrices yield different push recovery
behaviors. For example, a small Γ11 and large values of
Γ21 and Γ22 will generate the motion shown in Fig. 3(b).
On the other hand, a large Γ11 causes the robot to respect
angular momentum more strictly. When the desired angular
momentum is zero, which is reasonable for stepping motion,
the controller would move the robot CoM position rather than
rotate the trunk. By adding a low-level stepping controller
to this momentum controller, reactive stepping was achieved
as shown in Fig. 3(c).

Next we explain how to transition from this reactive
stepping controller to the tripod fall controller. As shown in
Fig. 3(d), the tripod fall motion includes both stepping and
bending down of the trunk of the humanoid. Thus Γ11, Γ21

and Γ22 are tuned to generate those motions. Γ11 is chosen
so that it is smaller than the one for reactive stepping but
greater than the one for balance maintanence, and Γ21 and
Γ22 are also set in between the reactive stepping values and
the balance maintanence values.

B. Control Algorithm
The main control algorithm for the tripod fall is as follows:
• After the push is completed, the humanoid takes a

step at the learned stepping location while bringing
the shoulder joints to the learned shoulder angles and
stretching the wrist angles.

• On the completion of stepping, the humanoid locks the
leg joints. The arms are also locked after they are fully
stretched.

There are six control parameters: x-y stepping location on
the floor (2 parameters) and two shoulder angles for each
arm (2× 2 = 4 parameters).

In future, we will consider impedance control of the
contacting foot and hand at the impact time so that the
controller can further reduce the impact force.

C. Reinforcement Learning Algorithm
In order to find the optimal stepping location and the

optimal shoulder angles, we implement a reinforcement
learning algorithm using a gradient descent method [7].

The first challenge is to determine which robot states to
use to train the learning algorithm. Since a humanoid robot
has a large number of degrees of freedom, exploring all the
states can be impractical and time consuming. For instance,
the robot in our simulation has 24 dof. In addition, there
are many other important quantities such as CoM, CoP,
linear/angular momentum, etc. If we explore all the states
and the derived quantities, a learning algorithm has to work

1k̇d and l̇d are not derivatives of kd and ld but are desired values for
rate changes of kd and ld.

in a 50+ dimensional space. In order to achieve an efficient
learning, we use a reference stepping location for training
so that the six control parameters are assigned at the given
stepping location. In other words, when the fall controller
is activated, the robot calculates the stepping location using
only the robot states (no control parameters used here) and
the robot performs the tripod fall controller using the control
parameters which are stored at the stepping location. Finally,
the control parameters at that stepping location are updated
given the impact forces at the foot and the hand.

In order to use the stepping location as the reference,
it has to be unique and time invariant so that the same
robot states yield the same reference stepping location. We
use the generalized foot placement estimator (GFPE) as the
reference point, which was proposed in our previous work [8]
for reactive stepping. The GFPE is chosen so that the CoM
will stop vertically above the stepping location after the robot
takes a step, modeling the humanoid as a rimless wheel. The
GFPE has the following properties: 1) defined both on level
and non-level grounds, 2) unique, 3) not state-dependent and
4) fixed on the ground; once computed, it does not move with
subsequent robot movement. Therefore, instead of exploring
the entire robot state space, the controller updates the six
parameters given the GFPE which can uniquely decided from
the robot states.

We train the controller by giving a variety of pushes to the
robot. Since each push results in its corresponding GFPE,
and the learning algorithm trains the parameters assigned at
the GFPE.

The reinforcement learning algorithm works as described
in Algorithm 1. The algorithm starts with reading the current
parameters corresponding to the calculated GFPE, and adds
Gaussian noise to the parameters,

ŵ = w +Z

Z v N (0,σ2)

where w is the current vector of the control parameters and
ŵ is the new vector with noise Z and variance σ2.

Algorithm 1 Policy gradient learning algorithm
1: for Each trial do
2: Start with a push with the fixed magnitude and direc-

tion
3: Obtain g(w) from the previous simulation data
4: Add a Gaussian noise Z to w
5: Obtain g(w +Z) after the fall control is done
6: Update w by δw
7: end for

The parameters are updated by the gradient descent
method:

∆w = −η(g(w +Z)− g(w))eN

where η is a matrix of learning rates, g(·) is a cost function
defined as the sum of the maximum impact forces:

g(w) = αFfoot + βFhand when, zCoM > Zthresh, (3)
g(w) = αFfoot + βFhand + Γ, otherwise, (4)



where Ffoot and Fhand are the maximum impact forces to
the swing foot and the landing hand, respectively, during fall.
The positive constants α and β are used to set the relative
importance; both are set to 1.0 for the following simulation.
eN is an eligibility vector, updated by:

ek+1 = ek +
Z

σ2
,

where k is a number of trials. To penalize the case in which
the robot cannot stabilize the tripod posture and falls to the
ground, the constant penalty Γ is added when the height of
the CoM zCoM is lower than a threshold value.

III. SIMULATION

The tripod fall controller has been implemented in our Lo-
comote software package [9] and simulated on Webots [10].
The full-sized humanoid in our simulation has two legs each
with 6-dof, two arms each with 4-dof of which the two wrist
joints are locked during the tripod fall control. The robot is
1.3 m tall and weighs 55 kg.

A. Training

As a training set, a number of sharp pushes are applied
from behind to the center of the humanoid trunk when the
humanoid is standing still with double support as shown in
Fig 4. We train the learning controller for a fixed number of
pushes. Each push force has two features: a magnitude and
a direction. A range of 0.1sec duration push forces varying
from 240N to 360N with 20N increments (a total of 7 force
magnitudes), and having directions 0◦, 20◦ and 30◦, (a total
of 3 directions) measured from the forward direction of the
humanoid (clockwise looking from the top), were selected
in the simulation. The total number of cases is therefore
7× 3 = 21. The magnitudes of the pushes are chosen based
on the experiences of our previous work [8] where we found
out that our reactive stepping controller can survive up to the
280N for 0.1 sec push.

The initial stepping location is chosen as the mid point
between the initial swing foot location and the GFPE. The
initial shoulder angles are 0◦ and 20◦ respectively for each
arm, which makes the arm perpendicular to the body when
seen from the side. We only use the right leg as the swing leg
in order to generate stable stepping motion since the pushes
in the training set tended to drive the CoP to the left foot.

Fig. 4 shows the learned motion of the tripod controller
for the (280N, 0deg) push. We trigger the controller as soon
as the push ends. The robot takes a step using its right foot
and lands on the ground using first the left hand and then
the right hand.

The evolution of the cost function and the control pa-
rameters are shown in Figs. 5 and 6. The learning curve
shows rapid convergence with some fluctuation. After 130
trials, the learning algorithm does not make any significant
improvement. As shown in Fig. 5(b), the stepping location
moves mostly forward which makes sense since a large step
may absorb more kinetic energy by slowing down the fall.
We conjecture the step location stops advancing due to the
kinematic limit and the limited time available for fall.

0 20 40 60 80 100 120 140
90

100

110

120

130

140

150
Learning Curve

Trial

C
os

t F
un

ct
io

n

(a)

−0.2 −0.1 0 0.1 0.2
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

stepping location

Z (m)

X
 (

m
)

(b)

Fig. 5. Evolution of tripod fall by reinforcement learning algorithm
for a push of 280N. (a) The curve shows the gradual reduction of cost
function. Though the cost function does not reduce strictly monotonically,
it nevertheless converges in a reasonable manner. Note the unit of the cost
function is scaled force. (b) The evolving location of stepping. The two
yellow boxes approximately represent the two footprints. The blue cross is
the GFPE. The location moves forward close to GFPE as learning continues.

(a)

0 20 40 60 80 100 120 140
−25

−20

−15

−10

−5

0

5

10

15

20

25

Trial

S
ho

ul
de

r 
Jo

in
t A

ng
le

s 
(d

eg
)

 

 
Right 1
Right 2
Left 1
Left 2

(b)

Fig. 6. (a) Snapshot of the moment when the arm hits the ground. (b)
Plot for the learned shoulder angles from the 280N push case. The robot
touches the ground using the left hand first, and the learned angles make
the left arm almost perpendicular to the ground, which makes sense since
that right angle minimizes the time between stepping and the hand contact.
The shoulder angles of the right arm do not contribute to the cost function
since the maximum impact force of the arms always comes from the left
hand, therefore the learned angles of the right arm do not converge.

The evolution of the shoulder angles in Fig. 6(b) is also
intuitively understandable. Considering that the left hand hits
the ground first and is likely to have the maximum impact
force, the learned shoulder angles of the left arm makes
the arm hit the ground in almost perpendicular as shown
in Fig. 6(a), which implies that the left hand hits the ground
as soon as possible in order to minimize the landing speed
of the robot at the instant ground contact. The graphs of the
right arm shoulder angles do not show clear tendency since
landing of the right arm is unlikely to yield the maximum
impact force.

Fig. 7 shows the reduction of the maximum impact force
for the (280N, 0deg) push. Without fall control, the maxi-
mum impact force is about 12 kN to the knee and the head
as shown in Fig 8(a). Using the tripod fall controller with the
initial control parameters significantly reduces the maximum
impact almost by half, and it is further diminished to 4 kN
after learning. The exerted forces to robot bodies in Fig 8
show that without fall control three different bodies (knee,
head and trunk) have larger impact forces than the maximum
impact force from the tripod fall control.

Fig. 9 shows the time evolution plots of potential and



Fig. 4. Snapshots showing a sequence of robot configurations of the learned tripod fall control of a full-sized humanoid having two 6-dof legs and two
4-dof arms. The two wrist and the two elbow joints are locked so that the arms are fully stretched. The red cylinder in the very left snapshot indicates a
push of 280N with a duration of 0.1 sec. The robot takes a step and lands on the ground by the two hands.

No Control Start of Learning End of Learning
0

2000

4000

6000

8000

10000

12000
Maximum impact force

M
ax

 F
or

ce
 (

N
)

Fig. 7. The maximum impact force during fall from the 280N push case.
Without fall control, either knee or head receives the maximum impact force
during fall. For the 280N case, the maximum impact is occurred at the knee
contact as shown in Fig 8. Even with the unlearned controller, the maximum
impact force is reduced about by almost half, and a trained controller shows
three times smaller maximum impact force to the arm.

1.6 1.8 2 2.2 2.4 2.6
0

2000

4000

6000

8000

10000

12000

time (sec)

m
ax

 im
pa

ct
 fo

rc
e 

(N
)

Forces on the bodies w/o fall control

 

 

1.6 1.8 2 2.2 2.4 2.6
0

2000

4000

6000

8000

10000

12000

time (sec)

m
ax

 im
pa

ct
 fo

rc
e 

(N
)

Forces on the bodies with Tripod Fall

 

 

Foot
Knee
Arm
Head
Body

Foot
Knee
Arm
Head
Body

Fig. 8. Exerted forces on the robot bodies during fall from the 280N push
case. Without fall control, the knee and the head have the greatest impact
force at the first and second contact to the ground. The tripod controller
significantly reduces the peak force which occurs at the hands.

kinetic energies during humanoid fall. Both plots start at
the same energy with large PE and small KE. Without
fall control, most of the PE is converted to the KE which
contributes to the higher speed at impact. In contrast, the
big gap between the PE curve and the KE curve proves that
the tripod fall controller conserves a large portion of the PE
even after fall and consequently the velocity at the impact is
much smaller. The PE versus KE plot in Fig. 10 highlights
that difference. The max KE of the no fall control case is
about 147 J and that of the tripod fall control is about 40 J.

All the results from the training set are summarized in
Table I. In every training item, the tripod fall controller
makes significant reduction of the maximum impact force.

Fig. 11 shows the trained stepping locations according to

1 1.5 2 2.5 3
0

50

100

150

200

250

300

time (sec)
E

ne
rg

ie
s 

(J
)

w/o Fall control

 

 
Potential
Kinetic

1 1.5 2 2.5 3
0

50

100

150

200

250

300

time (sec)

E
ne

rg
ie

s 
(J

)

with Tripod Fall

 

 Potential
Kinetic

Fig. 9. Time-energy plots from the 280N push case. The height of the
CoM is used for the potential energy and the velocity of the CoM is for
the kinetic energy for simplicity. The plots show the significant reduction of
energy conversion by the tripod fall controller. The first bump of the right
plot comes from stepping and the two following bumps denotes moments
of the hand-landing.

the GFPEs. Though the GFPEs (blue crosses) clearly display
the angles of the pushes, the learned stepping locations (red
circles) are more biased to the right. We conjecture that this
bias comes from the fact that the robot must rotate around
the leading edge of the convex hull as we discussed earlier
when we model a humanoid as a polyhedra. Even though
the instantaneous CoM velocity after the push shows the
direction of the push (the GFPE uses the CoM velocity for its
computation), the left directional portion of the CoM velocity
diminishes as the robot eventually falls around the front edge
of the two feet or only the left foot.

IV. EXPERIMENTS

Since the tripod fall experiments are likely to damage
a full-sized humanoid robot, we have performed our ex-
periments of fall using the smaller Aldebaran NAO H25
robot [9]. Due to the limitation in the hardware control
interface and force sensing capability, we play-back the pre-
recorded joint angle trajectories from simulations on the
robot hardware instead of running the online reinforcement
algorithm.

In order to generate the joint angle trajectories, we repeat
the online reinforcement learning algorithm for the NAO
robot in simulation. Since it is very hard to generate a precise
impulse force in experiments, a steady and slow push is given
to the NAO robot in simulation until the lean angle of the



Push Maximum impact force (N)
Magnitude (N) Angle (deg) No control Start of Learning End of Learning

240
0 11800 5400 3200
20 11100 5600 3700
30 10100 6000 3700

260
0 12100 5100 2300
20 11700 5400 3000
30 11700 5400 1500

280
0 11900 6600 3900
20 11700 6300 4000
30 12000 6700 3900

300
0 11700 5700 4000
20 11000 5800 4300
30 10100 6100 3900

320
0 11100 5100 3600
20 12100 5400 3900
30 11000 5700 4300

340
0 12200 5000 3400
20 11700 5700 3900
30 10700 6200 3700

360
0 11800 4100 3300
20 12200 5000 4100
30 10600 6700 3800

TABLE I
REDUCTION OF THE MAXIMUM IMPACT FORCE BY REINFORCEMENT LEARNING ALGORITHM. THE PUSH MAGNITUDES RANGE FROM 240N TO 360N

IN 20N STEPS; EACH PUSH LASTS FOR 0.1 SEC, AND IS APPLIED ON THE ROBOT HORIZONTALLY MAKING THREE ANGLES FROM THE FRONT

DIRECTION: 0, 20, 30 DEGREES. THE MAXIMUM IMPACT FORCES ARE ROUNDED AT 100N.

Fig. 10. Potential energy (PE) versus kinetic energy (KE) plot from the
280N push case. The curves start from the lower right corner with the largest
PE and zero KE. The arrows indicate the direction time evolution on the
plots. The plots show that the robot falling under tripod control strategy
retains a much larger PE after the fall compared with the no-fall-control
case.

robot exceeds the pre-determined 15 degrees threshold, at
which the robot is considered to start falling.2

Given the pre-recorded trajectories, the robot is controlled
to follow the trajectories using the built-in function for the
trajectory control of the NAO. The controller runs on an
external laptop connected to the robot via a wired network.
The lean angle of the robot is estimated from the IMU. More
detailed setup of the experiment can be found in [9].

Since the NAO robot does not have force sensors in the
hand or wrist, we measure the impact force at the hands
indirectly using the acceleration data from the IMU. Fig. 13
shows the accelerations from the two experiments. In each
case we see a significant reduction of the peak acceleration.

2This threshold was also used in our earlier fall experiments [9].

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25
−0.1

0

0.1

0.2

0.3

0.4

0.5

Y (m)

X
 (

m
)

Fig. 11. Trained stepping locations. The blue crosses are the GFPEs
corresponding to the pushes, and the red circles are the learned stepping
locations connected to the GFPEs by the dotted green lines. The yellow
boxes are the initial footprints.

V. CONCLUSIONS AND FUTURE WORK

In order to reduce the damage to a humanoid robot caused
by a fall, we proposed a new strategy called the tripod
fall control. In this approach the robot adopts a tripod like
posture during the fall by deliberately using three consecutive
contacts, two hands and one foot. The strategy ensures that
only a fraction of the robot’s potential energy is converted
into kinetic energy so that the resultant velocity at the impact,
and consequently the extent of damage, is reduced.

To simplify the control problem, the strategy controlled
only six parameters: step location (x and y) and shoulder
joint angles (2 per arm). Due to the highly non-linear
dynamics of the humanoid, we used reinforcement learning



Fall 
Tripod 
Fall 

push 

Fig. 12. Consequence of a humanoid fall without and with the proposed
tripod fall controller. The Aldebaran NAO robot is subjected to a push from
behind (top figure) in upright stance pose. Without any fall controller the
robot falls to the ground where the entire potential energy is transformed
to kinetic energy resulting in high impact velocity which may damage the
robot. The tripod fall controller uses the right foot and two hands to keep the
CoM high so that the velocity at impact is lowered and damage is reduced.

algorithm to search for the optimal values of these param-
eters. For efficient training, the entire state of the robot
was projected on the generalized foot placement estimator
(GFPE) [8]. The control parameters were assigned at the
GFPE of each training case as if the GFPE is an index for
the parameters.

The simulation results showed that our strategy results in
a significant reduction of the maximum impact force. The
resultant motions suggested that the robot should take a long
step and the arms should make contact with the ground in a
perpendicular configuration, which matched our intuition.

Our controller was experimentally implemented on a NAO
robot in order to prove our concept. Due to the limited
sensing capability of the robot, we measured the downward
trunk acceleration rather than the contact force.

We can identify the following extensions to this work.
Though the simulation and experimental results showed
significant reduction of the maximum impact force using our
strategy, the remaining impact force is still large enough to
cause damage to the robot’s hands and arms. In future, more
sophisticated controllers such as an impedance control for
the arm contact or attaching soft material on the possible
contact areas of the robot can be useful

Additionally, one can perform hardware experiments of
reinforcement learning using additional force sensors at the
robot feet and hands.

A more general approach should include other 3D fall
scenarios such as backward falls and falls involving shoul-
der contact. Finally, it will be instructive to compare the
presented fall strategy to the reactive strategy during an
accidental human fall.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Time (sec)

A
cc

el
er

at
io

n 
(g

)

 

 

Fall w/o Control
Tripod Fall Control

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

Time (sec)

A
cc

el
er

at
io

n 
(g

)

 

 
Fall w/o Control
Tripod Fall Control

Fig. 13. The acceleration data of the trunk from the IMU during the falls
of the NAO robot. The dotted blue curve shows the acceleration without
any fall control. The default reactive fall controller was turned off. The solid
red curve is data from the tripod fall controller. The two experiments are
executed with the identical initial conditions.

VI. ACKNOWLEDGMENTS
We wish to thank the anonymous reviewers for valuable

comments.

REFERENCES

[1] K. Fujiwara, F. Kanehiro, S. Kajita, and H. Hirukawa, “Safe knee
landing of a human-size humanoid robot while falling forward,” in
IEEE/RSJ Intn’l Conf. on Intelligent Robots and Systems (IROS),
September 28– October 2 2004, Sendai, Japan, pp. 503–508.

[2] K. Fujiwara, S. Kajita, K. Harada, K. Kaneko, M. Morisawa, F. Kane-
hiro, S. Nakaoka, S. Harada, and H. Hirukawa, “Towards an optimal
falling motion for a humanoid robot,” in Humanoids06, 2006, pp. 524–
529.

[3] K. Ogata, K. Terada, and Y. Kuniyoshi, “Falling motion control for
humanoid robots while walking,” in Humanoids07, Pittsburgh, 2007.

[4] ——, “Real-time selection and generation of fall damage reduction
actions for humanoid robots,” in Humanoids08, Dec. -3 2008, Daejeon,
Korea, pp. 233–238.

[5] K. Fujiwara, F. Kanehiro, S. Kajita, K. Kaneko, K. Yokoi, and
H. Hirukawa, “UKEMI: Falling motion control to minimize damage
to biped humanoid robot,” in IEEE/RSJ Intn’l Conf. on Intelligent
Robots and Systems (IROS), Sep 2002, Lausanne, Switzerland, pp.
2521–2526.

[6] S.-H. Lee and A. Goswami, “Ground reaction force control at each
foot: A momentum-based humanoid balance controller for non-level
and non-stationary ground,” in IEEE/RSJ Intn’l Conf. on Intelligent
Robots and Systems (IROS), Taipei, Taiwan, Oct 2010, pp. 3157–3162.

[7] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-
tion. MIT Press, 1998.

[8] S. Yun and A. Goswami, “Momentum-based reactive stepping con-
troller on level and non-level ground for humanoid robot push re-
covery,” in IEEE/RSJ Intn’l Conf. on Intelligent Robots and Systems
(IROS), San Francisco, USA, Sep 2011.

[9] ——, “Humanoid robot safe fall using aldebaran NAO,” in IEEE Intn’l
Conf. on Robotics and Automation (ICRA), St. Paul, USA, Apr 2012.

[10] O. Michel, “Webots: Professional mobile robot simulation,” Interna-
tional Journal of Advanced Robotic Systems, vol. 1, no. 1, pp. 39–42,
2004.




