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Abstract In this paper we compare three methods for the energy optimal gait gener-
ation for biped robots during the single support phase. The first approach searches for
unconstrained trajectories generated by piecewise constant inputs, the second approach
constrains the Cartesian trajectories of the swing foot and the hip of the robot to a class of
time-polynomial functions, and the last method approximates the robot joint trajectories
by a truncated Fourier frequency series. Using a simplified robot dynamics that ignore
the centripetal and Coriolis terms, these methods are compared according to the input
energy and the initial mechanical energy. The numerical study presented here shows that
for an equivalent amount of computational burden, the unconstrained method provides
motions with the lowest input energy. Furthermore, it also provides the initial velocities
that generate ballistic motions with almost zero input energy.
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Introduction

Recently, many studies have been devoted to locomotion, path planning and control of
biped robots [1]-[8]. The main motivations for using walking robots rather than the more
conventional wheeled robots for certain tasks are their locomotion capability on irregular
surfaces and their versatility in negotiating larger obstacles.

Since mobile robots need to carry their own energy source a lower rate of energy
consumption would directly contribute to a longer work cycle. In particular, the current
generation legged robots require more control energy than the comparable wheeled robots
and this is an important issue to be resolved before the use of legged robots is practically
viable. So, the interest of characterizing low energy trajectories appears natural [1] [2]
[3] [11]. Tt is not too unreasonable to expect that their are locomotion gaits for biped
robots that consume very little energy. This is reinforced by the biomechanical analysis
of natural human gait [10] and practical [9] and numerical [7] results of simple passive
biped robot models that can walk down unaided on an inclined slope.

The problem of finding these low energy gaits for a more complex robot model is not
trivial and only a few partial analytical results are available up to now, see [6]. Only few
papers deal with the energy optimal gait generation while time optimal problem is more
commonly treated. Previous works searching for numerical solutions were based on time-
polynomial approximations [2] [3], or Fourier expansions [1], or on a combination of both
[11]. A nice and quite complete treatment of the application of the optimal programming



to human locomotion is given in [5], where penalty functions are used to minimize the
total mechanical work done. This technique is now superseded by more recent numerical
optimization algorithms. It can be noticed that the concatenation of several phases, with
impulsive loads, makes the optimal control problem even harder.

In [4], look for ballistic trajectories through impulsive control which brings the sys-
tem to required initial conditions to perform the natural gait. This impulsive control is
supposed to be instantaneous and it is applied during the impact phase.

In this paper we propose an alternative method to generate ballistic motion of the
biped by supposing that a control exists all through during the motion (as opposed to the
methods of [4] [8]). The optimization process generates the initial and terminal velocities
that correspond to the minimum-energy motions. This approach is compared to the two
previously proposed methods based on an optimization over a restricted class of joint
trajectory functions.

Problem formulation

The complete dynamics of a biped robot faithfully mimicking the human gait will be rather
involved. The human gait cycle is divided into two phases: the single support phase or the
swing phase (one foot on the ground and the other foot swinging) and the double support
phase (both feet on the ground). The transition from the single support to the double
support phase, also called the contact phase, is associated with the heel of the front foot
impacting with the ground. The transition from the double support to the single support
phase of the next step, also called the take-off phase, is caused when the toe of the rear foot
leaves the ground. The dynamic equations of a robot consisting of all the described phases
is composed of ordinary differential equations for swing stage and algebraic equations
for the transition stages (the latter are usually modeled as instantaneous phenomena).
Moreover, the topology of the kinematic chain making up the robot changes from the
single support to the double support phase complicating further the differential equations.

It is not an easy task to choose a kinematic model for the biped that captures the
essence of the anthropomorphic gait while keeping the model reasonably simple to allow
intuitive insights about its behavior. Admitting the fact that the simplifications may
sacrifice some of the subtleties of human motion, we have converged upon a planar four
degrees-of-freedom (DOF) biped mechanism as shown in Figure 1. We have assumed that
in this model the trunk will be upright during the walk. This seems reasonable because
the trunk’s maximal excursion from the vertical axis is about 20mm at the pelvis point,
as reported in [11]. We will consider that the center of mass of the trunk is located at the
hip, that is at the center of rotation of the third joint.

The foot of the swing leg is considered massless thereby obviating motor in the swing
leg ankle. This guarantees that our robot model always has 4 actuated joints. In spite of
this commonly used assumption (see [3] and [11]) which substantially simplifies the model,
foot articulations (tarsus and metatarsus) play an important role during the transition
phase in generating and absorbing a significant amount of energy.

The n-DOF model biped robot is obtained by the Euler-Lagrange equations:

H(q)g+C(q,9)qg+g(q) =u (1)

where the vector ¢ € R" describes the generalized joint coordinates, H(q) is the inertia
matrix, C(q,q) is the matrix of centripetal acceleration and Coriolis terms, g(q) is the
gravity vector, and wu is the input torque vector.

From the energy point of view, the forces due to variation of H(q) are workless and
hence they contribute very little to changes in the energy levels since they have no impact



Figure 1: Simplified structure of the 4-DOF biped robot used for our
study.

on the time variation of the system Hamiltonian (i.e. ¢’ {%H(q) — C(q,é])}q = 0).
They will then not be taken into account in our study. This assumption is reinforced
by the fact that gear ratios of the D-C actuators are large enough so that coupling and
position dependent terms of the inertia matrix can be ignored. The main nonlinearities
considered by our model are the gravity term. The simplified biped dynamics is:

Hq+g(q)=wu (2)

where H is a diagonal constant matrix.
The robot dynamics (2), can also be expressed in a state-space description:

&= f(e,u) tel0T] (3)
where & = [T, 2117, the state vector, is composed of the position vector, #;, and the
velocity vector @,. Biped motion should be defined within an admissible set of joint
positions Q,: @; € (), that describes a region in the joint configuration space, where
some physical restrictions are imposed (i.e. legs should not cross the ground level, avoid
singular configuration, etc.). The specified boundary conditions for the optimization are
the initial and the terminal joint angles, ®1(0) and @,(T), respectively, and the time
interval of the swing phase T'. The initial and final velocities @5(0) and @,(7T') are free
however. They represent an additional degree of freedom giving the possibility for the
optimization procedure to generate low-energy trajectories (with zero cost).

For optimization we will use the following cost criterion:

T
J:/ ulu dt (4)
0

the minimization of which can be shown to be equivalent to the minimization of the
injected energy to the robot, other losses are neglected.
We should also define the admissible set U of feasible control w(¢) which defines a class

of bounded signals with finite energy in the time interval [0,T]: w € U 2 L5N LS, where
L5, and LS, stand for the extended Ly, and L., spaces, respectively.



Problem 1 Given the initial and final joint angles €1(0) = @19 € Qp, 1(T) = @17 € Q,
and the time interval T, the problem is to find the optimal sequence w*(t) € U, minimizing
the cost function J (eq 4), such that it steers the system (3) from @19 to ®17 complying
with the restriction @1(t) € Q. Or equivalently:

. T T
min J(u)= [y v udt

under { 2(1) (t), u(t)) (5)

= f(=
1(t) € Q,

given (10, 17, 1)

Optimization methods

In this section, two classes of optimization methods will be discussed. In the first, the
control input u(?) is assumed to be a series of constant values during the time-intervals
At = T/N. We refer to this method as the unconstrained piecewise constant control,
since the sequence of g(t) produced by this control input is not explicitly restricted to
belong to any particular time or frequency function. In the second class of optimization
methods, called the constrained methods, the Cartesian vector y(¢) or, equivalently, the
joint position vector q(t) is constrained to belong to a time-series polynomial expansion
or to a Fourier frequency approximation. The control input in both the classes obey the
inverse dynamic equations.

Unconstrained and piecewise constant method. The dynamic optimization prob-
lem 1, can be transformed into a static optimization problem as follows. First, assume that
the control sequence u(t) is piecewise constant. Let N be the number of time-intervals
and At = T/N the time-length of these intervals. The only restriction on the sequence
{u(k)}5! is that each element belongs to .

Let U € R™*YN be the input matrix gathering the input vector sequence u(k), i.e.

U= [’lLO,ul,’lLQ,...,’lI,N_l] (6)

then the cost function (4) can be rewritten as:

C= 3 ulk) ulk) At (7)

k=0
Then, by approximating & as,
xk+1)—xk)
B Al

in the state equation (3), we can obtain the following implicit discrete-time nonlinear

representation

2(k+1) = a(k) + At f(u(k), 2(k)
By induction, it is possible to express the state @ at the instant N as a function of the
initial state &(0) and the series w(0), w(1), - - u(N — 1), i.e

z(N) = F(2(0),(0),- -, u(N = 1)) = F(2(0),U) (8)
where the operator F'is defined as:
= fof---of(2(0),u(0)) (9)

The dynamic optimization problem can now be transformed into the following static
optimization one.



Problem 2 Given the initial and final joint angles @1(0) € Q,, 1(N) € Q, and the time
interval T, the problem is to find the optimal value for w*(t) € U, minimizing the cost
function C (7), such that it steers the system (3) from x1(0) to &1(N) complying with the
restriction &1 € Q. Or equivalently:

min C(u) = ¥ w(k)Tu(k) At

Ucu k=0

x(N)= F(x(0),U 10
under { 5135 G)Qx (x(0),U) (10)

given (x1(0), &1 (N), T, N)

Note that, as above, the initial and final velocity are free in our problem, and should
thus be generated as a result of optimization. Note also that the discretization has been
performed on the 2n dimensional state vector & and not on the equation (2) to reduce
discretization errors due to approximation of the second-order time derivative.

Polynomial Approximation. Let y(¢) be defined as:

y(t) =

where (23, ), and (zf, 2 ¢), are the Cartesian coordinates of the hip and foot, respectively
(see Fig. 1), then robot motion can be specified in terms of these coordinates. They are
related to the joint angles by the mapping y = W(q). As proposed in [3] and [2],
the optimal trajectory in y(¢) can be assumed to be approximated by an m-order time-
polynomial of the form:

y(t)=po+pit+--+p,t".

With initial and final position given, p, is uniquely defined. The remaining parameters
P =[p,---p,,] should be determined by the optimization procedure as explained below.
From the inverse kinematics we have:

at)=Wly); g=J'y; g=J [y JJ Y] (11)

where J is the Jacobian matrix which is full rank (in this case where J is quadratic, it
will be non-singular) for all ¢ € ... Note that singular configurations are never reached
during the human walk. Combining (2) and (11), and using the time approximation given
above, u(t) can be written as a function of the unknown parameters P:

w = HI'y-HI'JI 'y+g(W\(y)) (12)
= &, (P,1) (13)
Problem 1, can then be reformulated as:

Problem 3 Given the initial and final joint angles €1(0) = @19 € Qp, 1(T) = @17 € Q,
and the time interval T, the problem is to find the optimal parameters P*, minimizing



the cost function J (eq 4), such that it steers the system (3) from @19 to ®17 complying
with the restriction @1(t) € Q. Or equivalently:

N-1
min 3. (P, k)T®,(P,k) At
P k=0

under @, € €, (14)

given (x1(0), &1 (N), T, N)

where U, is the set of functions included in U generated by equation (13) for all
P ¢ R"™. Note also that the initial and final conditions in the joint coordinates are
obtained (uniquely) from the initial conditions on the Cartesian coordinates.

Fourier Approximation. Instead of constraining the Cartesian trajectories of the
robot one can also constrain its joint trajectories and one straigtforward way to do this
is with a truncated Fourier series. This approximation may be called the frequency
approximation, and it can be expressed as:

K K
q(t) = ao+ > agcos(kwt) + > bysin(kwt)
k=1 k=1
where the a; and the b; are the Fourier coefficients and w is the step base frequency. If
only the single support phase is considered then w = 27/T. However, in this case the
trajectory has an important bias between initial and final joint positions. This type of
trajectories is thus poorly approximated by only using the expansion given above. To solve
this problem it has been suggested in [11] to add a time-polynomial to absorb differences
between the initial and final conditions without over-increasing the order of the Fourier
approximation. For instance, adding a first-order polynomial gives,
K

q(t) = ao+ct+> (arcos(kwt) + bysin(kwt))

— D) (15)

D =la,a,,...,ax,by, by, ... by, c]isthe unknown parameter matrix to be determined.

The vectors ¢ and g are computed from (15) and substituted into (2). They enable
the control uw to be written as:

u=>eD,t) (16)

This equation defines, for all matrices D with bounded entries, a class of signals ¢y C U,

in which the search for optimal «* will be performed.
Our problem is now formulated as follows:

Problem 4 Given the initial and final joint angles €1(0) = @19 € Qp, 1(T) = @17 € Q,
and the time interval T', the problem is to find the optimal parameters D*, minimizing
the cost function J (eq 4), such that it steers the system (3) from @19 to ®17 complying
with the restriction @1(t) € Q. Or equivalently:

N-1
min Z (I)f(D,k)T(I)f(D,k) At
D k=0

under (k) € Q, (17)

given (x1(0), &1 (N), T, N)



/%/

Figure 2: Walk with piecewise constant con- Figure 3: Walk with polynomial approxima-
trol. tion.
Results.

The optimization method used here is a Sequential Method Programming based on Kuhn-
Tucker equations. This method solves at each iteration a Quadratic Programming sub-
problem (QP) which involves a quadratic approximation of the Lagrangian function com-
posed by the cost function and the constraints which are premultiplied by the Lagrange
multipliers.

In order to compare the different optimization methods, the following comparison
criteria are used:

e Input Energy. The cost function J (eq 4) represents the total control energy needed
to perform the single support phase. This measure quantifies the energy consump-
tion of the biped over one step without considering the energy consumed during the
transition from one step to the next.

e Initial Energy. If the injected energy is zero during the time step interval (i.e., the
motion is passive in the sense that it is generated by a zero control input), it is
important to take note of the initial value of the energy. This quantity represents
the energy level necessary to bring the system to the initial state required to perform
the ballistic gait. The total energy needed during a step is the sum of the energy
during the single-support phase and the energy during transition.

e Computational Burden. The CPU computation time and the number of parameters
to be optimized are also considered as a function of the total amount of computation
burden associated to each optimization method.

For the simulation results presented in this section, we have used as the walk constants
the step length S = 0.6m and the step period T' = 1s. Initial and final positions are chosen
to be symmetrical.

In figures (2) (3) and (4) we can observe the optimal gait obtained respectively with
piecewise constant time control(PCTC), polynomial approximation and Fourier expansion
respectively. Some differences can be observed; the foot trajectories are similar in Fourier
expansion and the polynomial approximation, but quite different in the PCTC, whereas
the hip trajectories are similar in the Fourier expansion and the PCTC, but different in
the polynomial approximation. These trajectories are shown in more detail in figure (5).

The control cost (J) and initial energy (H(0)) associated with each of these methods
are shown in Table I. It can be seen that the energy consumption is close to zero with
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| METHOD | Cost J (N2.m?.s) | Ho (N?2.m?.s) | Par. No. | CPU time s |
Piecewise constant 2.10~7 53.2 nx N =40 37
Polynomial Approximation 2121 47.9 nxm=20 137
Fourier Expansion 1565 48.1 nx (2K 4 2) =40 451

Table I: Comparison of the Optimization Methods Based on the Three Proposed Criteria. the

piecewise constant control. This implies that this formulation finds initial conditions of
velocity so that the gait is passive during the single support phase. The energy required
to achieve these initial conditions is approximately the same as the one required in the
other two methods. However, the initial directions of the velocity joint vectors turn out
to be quite different. In PCTC optimal gait, the swing leg behavior is like a pendulum:
the initial velocity carries the foot sufficiently high in order to arrive at the final position
through a “free” movement. Fig(6) shows the time evolutions of the control inputs.

The number of optimization parameters of these methods are quite equivalently (see
Table I, column 4), however CPU-time of the PCTC method is much smaller than in the
other two. By looking at this table, the PCTC appears superior to the other two methods
in all the comparison criteria.

Conclusions and Further Extensions.

This paper presented and compared three methods for optimal-energy gait generation for
biped robots. These methods are: piecewise constant inputs, time-polynomial approxi-
mation and Fourier expansion. The comparison was performed on the basis of injected
energy, initial energy and computational burden. The numerical study presented here
shows that the piecewise constant input method is superior to the other two approaches
in terms of energy and CPU-time. Moreover, this method was able to find initial velocities
that generate ballistic motions with almost zero injected energy. Hence the method was
able to find passive motions. The study was only concerned with the single support phase
and the transition phases. We have already developed a model and are currently studying
a complete gait cycle including the double support phase. It is interesting to investigate
the possibility of finding other basis functions to approximate the walking gaits, and to
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study the potential benefits of introducing passive elements in the joint articulations [1],

which appear as a natural way of enhancing a passive walk.
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